Екатерина Калиниченко

Девы
Место проживания
Россия
Владивосток
Родной город

Владивосток
Возраст

42 года
Родилась
31 августа 1983
Семейное положение
не состоит в браке, не замужем
Телефон
Подробная информация:
Екатерина Калиниченко проживает в городе Владивосток, Россия. Родной город - Владивосток. Рождена в год Свиньи по китайскому гороскопу, знак зодиака Девы. В настоящий момент Екатерине 42 года, не замужем. Из открытых источников получены следующие сведения: информация о среднем образовании.
Екатерина пишет о себе:
There are numerous mathematically equivalent formulations of quantum mechanics. One of the oldest and most commonly used formulations is the transformation theory proposed by Cambridge theoretical physicist Paul Dirac, which unifies and generalizes the two earliest formulations of quantum mechanics, matrix mechanics (invented by Werner Heisenberg)[2] and wave mechanics (invented by Erwin Schrödinger). In this formulation, the instantaneous state of a quantum system encodes the probabilities of its measurable properties, or "observables". Examples of observables include energy, position, momentum, and angular momentum. Observables can be either continuous (e.g., the position of a particle) or discrete (e.g., the energy of an electron bound to a hydrogen atom). Generally, quantum mechanics does not assign definite values to observables. Instead, it makes predictions about probability distributions; that is, the probability of obtaining each of the possible outcomes from measuring an observable. Naturally, these probabilities will depend on the quantum state at the instant of the measurement. There are, however, certain states that are associated with a definite value of a particular observable. These are known as "eigenstates" of the observable ("eigen" can be roughly translated from German as inherent or as a characteristic). In the everyday world, it is natural and intuitive to think of everything being in an eigenstate of every observable. Everything appears to have a definite position, a definite momentum, and a definite time of occurrence. However, quantum mechanics does not pinpoint the exact values for the position or momentum of a certain particle in a given space in a finite time; rather, it only provides a range of probabilities of where that particle might be. Therefore, it became necessary to use different words for (a) the state of something having an uncertainty relation and (b) a state that has a definite value. The latter is called the "eigenstate" of the property being measured. For example, consider a free particle. In quantum mechanics, there is wave-particle duality so the properties of the particle can be described as a wave. Therefore, its quantum state can be represented as a wave, of arbitrary shape and extending over all of space, called a wave function. The position and momentum of the particle are observables. The Uncertainty Principle of quantum mechanics states that both the position and the momentum cannot simultaneously be known with infinite precision at the same time. However, one can measure just the position alone of a moving free particle creating an eigenstate of position with a wavefunction that is very large at a particular position x, and almost zero everywhere else. If one performs a position measurement on such a wavefunction, the result x will be obtained with almost 100% probability. In other words, the position of the free particle will almost be known. This is called an eigenstate of position (mathematically more precise: a generalized eigenstate (eigendistribution) ). If the particle is in an eigenstate of position then its momentum is completely unknown. An eigenstate of momentum, on the other hand, has the form of a plane wave. It can be shown that the wavelength is equal to h/p, where h is Planck's constant and p is the momentum of the eigenstate. If the particle is in an eigenstate of momentum then its position is completely blurred out. Usually, a system will not be in an eigenstate of whatever observable we are interested in. However, if one measures the observable, the wavefunction will instantaneously be an eigenstate (or generalized eigenstate) of that observable. This process is known as wavefunction collapse. It involves expanding the system under study to include the measurement device, so that a detailed quantum calculation would no longer be feasible and a classical description must be used. If one knows the corresponding wave function at the instant before the measurement, one will be a
Интересы Екатерины:
музыка
Екатерина Калиниченко живет здесь:
Местожительство
* Фактический адрес проживания определен с точностью до города: Россия, Дальневосточный федеральный округ, Владивосток.
Среднее образование:
Школа №23
1990
2000
Россия
Владивосток
НАЙТИ ОДНОКЛАССНИКОВ
Аккаунты в социальных сетях:
Facebook аккаунт не найден
Instagram аккаунт не найден
Twitter аккаунт не найден
Правовая информация:
Информация получена из открытого источника: авторизуйтесь для получения ссылки на источник
За достоверность информации сайт ответственность не несет.
!

Это ваша анкета? Вы можете удалить ее с этого сайта.

Перейти к удалению анкеты

Однофамильцы Екатерины Калиниченко
Овен
Калиниченко
Виталий
Украина
Киев
21 марта 1988, 37 лет
Рыбы
Калиниченко
Анатолий
Украина
Великополовецкое
8 марта 1993, 32 года
Водолей
Калиниченко
Николай
Россия
Озерск
31 января 1989, 36 лет
Близнецы
Калиниченко
Ольга
Россия
Сорочинск
3 июня